
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

User-Defined Co-Speech Gesture Design with Swarm Robots
Minh Duc Dang
duc_dang@sfu.ca

School of Computing Science
Simon Fraser University
Burnaby, BC, Canada

Samira Pulatova
pulatova.samira@gmail.com
School of Computing Science

Simon Fraser University
Burnaby, BC, Canada

Lawrence H Kim
lawkim@sfu.ca

School of Computing Science
Simon Fraser University
Burnaby, BC, Canada

Figure 1: Two user-defined patterns of swarm robot co-speech gestures corresponding to the word "run." Each pattern includes
multiple phases, with red squares indicating the robots that have moved relative to the previous phase.

ABSTRACT
Non-verbal signals, including co-speech gestures, play a vital role
in human communication by conveying nuanced meanings beyond
verbal discourse. While researchers have explored co-speech ges-
tures in human-like conversational agents, limited attention has
been given to non-humanoid alternatives. In this paper, we propose
using swarm robotic systems as conversational agents and intro-
duce a foundational set of swarm-based co-speech gestures, elicited
from non-technical users and validated through an online study.
This work outlines the key software and hardware requirements
to advance research in co-speech gesture generation with swarm
robots, contributing to the future development of social robotics
and conversational agents.
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1 INTRODUCTION
In interpersonal communication, humans use various non-verbal
cues such as eye gaze, facial expressions, body posture, and ges-
tures to convey information and complement verbal discourse [15].
Among these non-verbal behaviors, gestures that synchronize with
speech - known as co-speech gestures - have garnered significant re-
search attention. Psychology and Neuroscience studies have shown
that co-speech gestures enable interlocutors to exchange nuanced
meanings beyond what is conveyed through speech alone [13, 75].
In Human-Robot Interaction (HRI) literature, it has been shown
that robots using co-speech gestures are perceived as more likable
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and lively, and they also enhance the task performance of their
human listeners [9, 60, 64]. Given these benefits of co-speech ges-
tures in human-human and human-robot conversations, research
has explored designing co-speech gesture systems for conversa-
tional agents, including social robots and virtual chatbots [42]. Fur-
thermore, recent advancements in deep learning have accelerated
the development of these co-speech gesture systems, enabling the
agents to perform more expressive gestures [50].

Although there is growing interest in co-speech gestures for con-
versational agents, existing research has predominantly focused
on human-like agents, such as humanoid robots or realistic virtual
avatars. This focus is understandable, as the human-like appearance
of these agents allows them to apply principles and insights from
the study of human communication more readily, thereby replicat-
ing the dynamics observed in human-human conversations [64].
Nevertheless, there are notable drawbacks to human-like conver-
sational agents. Firstly, a resemblance to humans does not always
equate to appeal - agents that look too similar to humans can evoke
the uncanny valley phenomenon, causing users to perceive them
as eerie or unsettling [49]. Secondly, in the field of social robotics,
developing realistic humanoid robots is both difficult and costly.
A survey on speech-based gesture generation for conversational
agents found that most studies used virtual agents rather than
humanoid robots, citing the limited degrees of freedom and high
development costs as significant obstacles to creating realistic co-
speech gestures [42].

Despite the challenges in developing co-speech gestures for
human-like conversational agents and the significant effects of
robot’s anthropomorphism on humans such as task performance
and emotion [30, 31, 43], there has been limited exploration of non-
humanoid alternatives. Indeed, existing studies on non-humanoid
robots as conversational agents have primarily focused on using
specialized bodies and movements that convey specific meanings,
often overlooking gestures as a means of more generalized non-
verbal communication [26, 28, 46]. To address this gap in research,
our project investigates the potential of using swarm robots as
conversational agents. This choice is inspired by prior works that
have proposed swarm robot systems as flexible and scalable user
interfaces with abundant degrees of freedom [29, 33, 34, 38, 41, 43,
58, 71, 78, 80]. Additionally, research in animation has shown that
simple movements of non-humanoid bodies, such as basic shapes
or everyday objects, can convey complex intentions and emotions
effectively, similar to how gestures do. [22, 72]. Therefore, we hy-
pothesize that the movements of a swarm robot system can be
synchronized with speech to function as co-speech gestures.

While designing gestures for humanoid conversational agents
mainly involves imitating human arm and hand movements, it
is unclear how these gestures can be replicated in swarm robots.
Building on prior research in gesture design [32, 77], we conducted
an elicitation study to generate user-defined co-speech gestures in
swarm robot systems and to understand how non-technical users
envision swarm robots as conversational agents. In summary, the
current research makes two key contributions:

• We present an elicitation study that establishes a founda-
tional set of swarm-based co-speech gestures and offers

insights into their hardware and software requirements for
their implementation.

• We introduce the novel application of swarm robot systems
as conversational user interfaces, laying the groundwork
for future research in social robotics and conversational
agents.

2 RELATEDWORKS
This section offers a comprehensive overview of existing research
literature, focusing on several key areas: previous studies on co-
speech gestures in human-robot interaction, challenges associated
with these gestures in social robots, the application of swarm robots
as user interfaces, and the use of animation principles and elicitation
studies in designing co-speech gestures.

2.1 Co-speech Gestures in Human-Robot
Interaction

Co-speech gestures have been established in the Psychology and
Neuroscience literature as essential to verbal communication [75].
Studies show that gestures can convey information not mentioned
in speech or add nuances to spoken information [17, 18], and their
use enhances communication and reduces the cognitive load in
conversations [19]. Furthermore, brain scan studies have found that
co-speech gestures influence neural activity in regions associated
with processing semantic information, suggesting that during a
conversation, listeners seek meaning not only in the spoken words
but also in the accompanying hand movements [13].

Building on the established benefits of co-speech gestures in
human-human conversations, researchers in Human-Robot Inter-
action have implemented these gestures in humanoid robots to ex-
plore their impact on interactions with humans. Studies have shown
that incorporating co-speech gestures enhances participants’ evalu-
ations of robots, improving perceptions of sympathy [62], liveliness
[61], anthropomorphism [60], engagement [3], and social ability
[64]. Additionally, robots using co-speech gestures have boosted
human task performance, such as improving participants’ ability
to recall information in storytelling contexts [74].

2.2 Challenges to Implementing Co-speech
Gestures in Social Robots

Despite the well-documented benefits of co-speech gestures in
robots, significant challenges still hinder the widespread adoption
of this technology. Firstly, some humanoid robots with co-speech
gesture systems, such as ASIMO [60–62] and KASPAR2 [67], were
developed in collaborationwith technology companies for academic
or industrial purposes [68]. As a result, these robots often have high
production costs and large sizes, making them unsuitable as social
companions or everyday robotic assistants. Additionally, while
efforts have been made to design co-speech gestures for smaller,
less expensive humanoid robots like NAO [3, 66], these robots often
lack the sophisticated actuator systems necessary for replicating
the complex arm, hand, and finger movements found in human
gestures. This limitation is underscored by the fact that research on
co-speech gesture generation has primarily been conducted with
virtual human avatars rather than humanoid robots - these studies

2
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cite the limited movement capability of humanoids as a significant
barrier to creating realistic gestures [42].

Furthermore, while studies have predominantly focused on co-
speech gestures for humanoid robots, their anthropomorphic ap-
pearance can sometimes cause discomfort due to the "uncanny
valley" effect [49, 76]. For example, Thaler et al. [73] found that par-
ticipants perceived humanoid virtual agents asmore eerie compared
to their non-humanoid counterparts. Additionally, Luria et al. [44]
discovered that although human-like behaviors in robots are easily
understood, they are not always the most effective - non-human
elements can sometimes feel more natural.

Despite these challenges of developing co-speech gesture sys-
tems for humanoid robots, few studies have examined the alterna-
tive of non-humanoid conversational agents, and to our knowledge,
none have explored the implementation of co-speech gestures in
such robots. For instance, Kim et al. [28] studied a block-based,
shape-changing robot in a storytelling context, while other research
focused on minimal conversational agents in healthcare settings
[26, 46]. There were also studies on non-humanoid robotic ges-
tures, such as Anderson-Bashan et al. [5] on their impact during
opening encounters, Rifinski et al. [10] on enhancing human in-
teractions, and Press & Erel [57] on reducing social awkwardness.
However, these studies have primarily focused on using specialized
bodies and gestures for specific objectives, rather than exploring
the broader conversational context of co-speech gestures.

2.3 Swarm Robotics
Given this gap in the research literature, the current study ex-
plores a new approach to implementing co-speech gestures in non-
humanoid conversational agents - using swarm robots. In recent
years, researchers have studied the use of small, tabletop robots
as a flexible and scalable user interface for applications such as
data visualization [38, 39] and education [40, 80]. Additionally, the
movement of these tabletop swarm robots has proven effective
for conveying information [21, 70] and expressing fundamental
emotions [7, 25, 63]. Since these functions are central to co-speech
gestures in human conversations [75], swarm robots should be ex-
plored as a potential interface for generating co-speech gestures
in human-robot interactions. Moreover, Kim et al. [35] found that
human observers can reliably and quickly interpret the intent of
a robotic swarm’s collective movement with just a glance. This
further supports the use of swarm robots for creating co-speech
gestures, as users do not need to fully focus on the swarm robots to
grasp their gestures, similar to how people primarily concentrate
on speech during conversations with other humans [75].

Nevertheless, the current literature has not considered the im-
plementation of co-speech gestures in swarm robots. The closest
related study is Ichihashi et al. [24], which examined how a swarm
of tabletop robots functioning as a hand affects the sense of embodi-
ment in the user controlling the swarm. Although this study did not
explore how the swarm hand could generate different co-speech
gestures, it supports our research by validating the idea of using a
group of swarm robots as a body part to achieve various objectives
— in our case, gesture generation.

2.4 Animation as Inspiration for Designing
Co-speech Gestures in Swarm Robots

To further support the use of swarm robots for co-speech gestures,
we consider how these gestures might be realized. While a collec-
tive group of swarm robots could mimic a human hand to replicate
gestures, this approach would under-utilize the scalability and flexi-
bility of swarm robots [33]. Theoretically, swarm robots, with their
numerous units and degrees of freedom, could form a wider variety
of shapes and execute more complex movements than a human
hand or arm [14, 38]. Therefore, exploring methods beyond merely
mimicking human movements is essential to fully leverage the
unique capabilities of swarm robots for co-speech gestures.

One source of inspiration for designing co-speech gestures in
swarm robots is animation. In the past, animation principles have
influenced improvements in robot behavior design. For example,
Takamaya et al. [72] found that incorporating animation techniques
like anticipation and reaction canmake robot behaviors more under-
standable. Another relevant study is Heider & Simmel [22], which
found that people interpret simple movements of geometric shapes
as actions of animate beings, often attributing personalities and mo-
tives to them. Citing such human tendency to interpret movements
as emotional, intentional, and social, Hoffman & Ju [23] suggested
that non-humanoid robot designs should consider movement as a
key element. Furthermore, Erel et al. [16] even showed that peo-
ple automatically interpret any robotic movements as social cues,
regardless of whether the robot has a social role. These principles
underlie the potential use of swarm robots for expressing co-speech
gestures, with their movements and formations conveying semantic
information that aligns with speech [63, 70].

3 ELICITATION STUDY
While animation principles can help envision how co-speech ges-
tures with swarm robots might look, it remains unclear what spe-
cific gestures would accompany different types of speech. For ex-
ample, designing a gesture for the speech "It is under the table"
could involve various movements, such as moving a group of robots
downward or having them form a table with one robot placed under-
neath. One solution to this uncertainty is to hire expert animators to
design gestures for specific speech instances, though this may not
reflect the preferences of most users [59]. Alternatively, we can use
elicitation methods [1, 45, 51, 54] from gesture design, as popular-
ized by Wobbrock et al. [77] study on touchscreen controls, where
participants were shown the result of a gesture on a touchscreen
and then instructed to perform the gesture they believed would
create that outcome. Kim et al. [32] employed a similar method to
develop user-defined gestures for controlling swarms of robots. We
adapted this elicitation approach for the current research by show-
ing participants various speech instances and asking them to design
movements and formations for swarm robots as co-speech gestures,
which we then recorded and analyzed to identify design insights
and develop an initial set of swarm-based co-speech gestures.

3.1 Hypotheses
In addition to collecting the co-speech gestures that participants
generated for different speech instances, we hypothesized that
the content of these instances would influence the patterns of the

3
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generated gestures. Specifically, we categorized the speech content
into four semantic types - action (verbs), object (nouns), relation
(prepositions), and characteristic (adjectives) - then examined two
dependent variables: the average preferred speed and quantity of
robots used in the generated gestures. These two characteristics
were chosen because previous research on swarm user interfaces
has shown that the number of robots and their speed can greatly
influence how users interact with a robot swarm [32, 33]. The
detailed hypotheses are as follows:

H1: Different semantic types will result in generated co-speech ges-
tures with significantly different preferred speeds.
We anticipated that semantic types would significantly influence
participants’ preferences for the average speed of swarm robots.
This expectation is based on the notion that different speech content
evokes distinct contexts, requiring different types of movements
as gestures [75]. If this hypothesis is correct, future swarm-based
conversational agents will need hardware that supports a broad
range of speeds.

H2: Semantic types do not significantly impact preferences for the
number of robots used in generated co-speech gestures.
We hypothesized that the quantity of swarm robots would not vary
significantly across different semantic types. This assumption is
based on the idea that participants would prefer a consistent num-
ber of robots for their gestures, regardless of the speech content.
Additionally, Podevijn et al. [55] found that a larger number of
robots elicits a stronger physiological response from users. There-
fore, if this hypothesis is correct, future swarm-based conversa-
tional agents can simplify their hardware requirements by using a
uniform number of robots for gesture generation.

3.2 Methods
Adapting the methods described in Kim et al. [32], we presented
participants with an audio recording of a referent word, simulating
the speech of a swarm robot system. Participants then brainstormed
and generated movements and formations that the swarm robots
could use as co-speech gestures for the given word.

3.2.1 Apparatus.
For the swarm robots, we used Toio, a miniature multi-robot plat-
form developed by Sony Corporation [69]. The setup included 10
Toio robots (Figure 2.B), though participants could use any number
of robots, up to 10, for each gesture. We employed a 40 × 40cm2

tracking mat as a dedicated area where participants could manipu-
late the robots by hand (Figure 2.A). To simulate a speaking robotic
system, we projected the audio of each speech instance, gener-
ated using Google Cloud Text-to-Speech AI [20], from a laptop
positioned near the mat (Figure 2.C).

To ensure that participants understood the context of the speech
instances — single words in our study — we displayed their defini-
tions and parts of speech (verb, noun, adjective, preposition) on a
27-inch monitor positioned behind the mat. Additionally, to accu-
rately capture the gestures that participants created, we recorded
their physical manipulations and verbal explanations with a video
camera mounted on a tripod above the mat (Figure 2).

(B)

(A)

(C)

Monitor

Worksheet

Camera

Figure 2: Setup for the elicitation study. Participants sat in
front of a tracking mat (A) and manually manipulated 10
Toio robots (B). Audio for single-word speech instances was
projected from a laptop near the mat (C).

3.2.2 Word Selection.
For the speech instances, we selected 40 English words, divided
into four semantic types - action, object, characteristic, and relation
- with 10 words in each type. We chose individual words rather
than phrases or sentences for this study to establish a foundational
gesture set for common semantic content since these words could
be used to build longer phrases and sentences. To ensure that the
generated gestures are broadly applicable, we selected words that
are frequently used in spoken language and have distinct meanings.

We achieved this by analyzing the top 200 most frequently spo-
ken words in each category (verb, noun, adjective, preposition)
from the Corpus of Contemporary American English [11]. To han-
dle words with similar meanings (e.g., "home" and "house"), we
grouped these words using a pre-trained word2vec model [48] and
K-means algorithm into 10 distinct clusters. We then manually
chose one word from each cluster so that each word had a unique
meaning. Table 1 shows the final set of referent words.

Table 1: We selected 40 referent words for the elicitation
study, categorized into four semantic types with 10 words
representing each type.

Verbs Nouns Adjectives Prepositions
(Actions) (Objects) (Characteristics) (Relations)
want world late around
help home wrong between
thank money best into
go time low through

think family serious versus
grow police big until
run people medical after
speak question difficult below
write health beautiful towards
join book different within

4
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3.2.3 Participants.
20 participants (8 males, 12 females) aged 18 to 35 years (𝑀 =

21.5 ± 0.97) were recruited from our institution. All participants
were fluent or native English speakers and reported little to no
prior experience with swarm robotics. Each participant provided
informed consent, and the study was approved by the institutional
review board.

3.2.4 Procedure.
Participants were first briefed on the study’s background and pur-
pose of designing co-speech gestures for swarm robots. They then
interacted with the Toio robots to familiarize themselves with their
weight and shape. We demonstrated the robots’ movement speeds
— slow (100 mm/s), medium (200 mm/s), and fast (300 mm/s) — by
showing a robot moving in a straight line at each speed. Following
this, participants were introduced to the study procedure.

In each trial, participants listened to an audio recording of a
single-word speech instance and viewed the word, its definition,
and its part-of-speech tag on the monitor display. For instance,
if the word "home" was played, the display showed "home," its
definition ("The place where a person or animal dwells"), and its
part-of-speech tag ("n" for noun). The screen remained up for two
minutes, during which participants brainstormed a co-speech ges-
ture for the swarm robot that matched the presented word. This
involved physically manipulating the swarm robots within the des-
ignated tracking mat while describing and explaining the intended
gestures. We recorded these gestures, descriptions, and explana-
tions with the video camera. Once the two minutes elapsed, the
display automatically switched to indicate the end of the brain-
storming period. Participants then specified the preferred robot
speed, noted the number of robots used, and drew the start and end
positions of each generated gesture on a provided worksheet.

To familiarize themselves with the task, participants began with
a practice trial and could repeat this practice as needed. In the
main trials, each participant worked with 20 words. The order
and selection of these words were randomly balanced for each
participant, ensuring that each word received 10 gestures once all
20 participants completed the study. The study’s randomization,
timing, and automatic procedures were programmed with JsPsych,
a framework for running behavioral studies [12]. After finishing
the 20 trials, each participant filled out a brief post-study survey,
which included questions about their task strategies, encountered
challenges, recommendations for the robots’ appearance (colors,
shape, and size), and any additional suggestions or concerns.

3.3 Analysis
Based on the methodologies outlined in Kim et al. [32] and Wob-
brock et al. [77], we developed a systematic taxonomy to analyze
qualitative data from video recordings, worksheets, and survey
responses. After validating the reliability of our coding scheme,
we calculated the agreement score for each generated gesture and
extracted other statistics.

3.3.1 Taxonomy.
As shown in Table 2, we categorize each co-speech gesture gener-
ated by participants based on its function, group characteristics,
and individual characteristics as follows:

(1) Function: The function of a gesture describes its role in
communication. McNeill [47] identified four categories:
iconic (representing objects or actions), metaphoric (convey-
ing metaphors), abstract (representing abstract concepts),
and deictic (pointing). Additionally, Kendon [27] included
a fifth category of symbolic gestures.

(2) GroupCharacteristics:When designing gestures for swarm
robots, we anticipated that participants would group some
robots to behave collectively rather than independently.
Based on this assumption, we counted the number of ro-
bot groups used in each gesture and recorded their collec-
tive formations, which included lines, simple shapes (e.g.,
squares, circles, triangles, rectangles), and complex symbols
(e.g., hearts, S-shapes, arrows). We also noted the collective
movements of each group, which could involve transition-
ing from one location to another, repetitive or back-and-
forth motion, or tracing a shape.

(3) Individual Characteristics: For each individual robot, we
considered two types of movements: external movements
involve relocating from one position to another, including
straight or curved paths, while internal movements involve
stationary actions such as jittering, oscillating, or spinning
in place. Additionally, we recorded the number of individual
robots used in each gesture.

3.3.2 Reliability.
To ensure consistency in applying the taxonomy for analyzing
each gesture, all three authors first discussed and jointly coded
10 of the 400 recorded videos. Next, two authors independently
coded 20 videos from four different participants. We calculated the
unweighted Cohen’s Kappa for seven items to assess inter-rater
reliability, which yielded 𝜅 = 0.76 with a standard deviation of
𝜎 = 0.16. Given the high level of agreement between raters, the
remaining videos were divided into two sets, with each set rated
by a single rater.

3.3.3 Agreement Score.
To establish a common set of co-speech gestures, we identified
gestures with the highest agreement among participants for each
referent word. Although participants often generated similar ges-
tures for a given word, these gestures exhibited slight variations.
For example, both P3 and P14 used a circular motion for the word
"around," but P3 included an additional robot in the center. Due to
these subtle differences, finding completely identical gestures was
challenging. Instead, we grouped similar gestures based on their
taxonomic categories, specifically their function and movements.
We then calculated an agreement score for each word to reflect
participant consensus, using the formula fromWobbrock et al. [77]:

𝐴 =
1
|𝑊 |

∑︁
𝑤∈𝑅

∑︁
𝐺𝑠⊆𝐺𝑤

(
|𝐺𝑠 |
|𝐺𝑤 |

)2
In the equation,𝑤 is a referent word in the set of all referent words
𝑊 , 𝐺𝑤 is the set of proposed co-speech gestures that accompanies
referent word𝑤 , and 𝐺𝑠 is a subset of similar gestures from 𝐺𝑤 .

3.3.4 Statistics.
We reported mean and standard error of agreement score, speed
preference, and robot quantity for the generated co-speech gestures.
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Table 2: Taxonomic analysis of swarm co-speech gestures generated by participants.

Taxonomy Categories Description

Function

Iconic The gesture depicts objects or actions.
Metaphoric The gesture represents a metaphor.
Abstract The gesture conveys an abstract concept with an arbitrary connection to the referent word.
Deictic The gesture indicates pointing.
Symbolic The gesture refers to a symbol.

Group
Characteristics

Quantity The number of swarm robot groups.

Collective
Formation

Singular The robot group consists of a single robot.
Line The robot group forms a line.
Shape The robot group forms a basic shape, such as a square, a circle, a triangle, or a rectangle.
Symbol The robot group forms a complex symbol, like an arrow, an S-shape, or a dollar sign.

Collective
Movement

Stationary The robot group does not move from its initial position.
Transform The robot group moves from one location to another, possibly changing formation.
Repetitive The robot group moves repetitively, including back-and-forth motions.
Shape-tracing The robot group traces a shape or symbol with its movement.
Other The robot group moves in a complex manner that does not fit into the other categories.

Individual
Characteristics

Quantity The number of individual swarm robots.

External
Movement

Stationary The swarm robot does not move from its initial position.
Straight The swarm robot moves in a straight path.
Curved/Circular The swarm robot moves in a curved or circular path.
Other The swarm robot moves in a complex manner that does not fit into the other categories.

Internal
Movement

Stationary The swarm robot does not have any internal movements.
Spin The swarm robot rotates in place.
Jitter The swarm robot performs small, rapid back-and-forth movements over a short distance.
Oscillation The swarm robot sways in place rhythmically from side to side.

The distribution of each taxonomy category across all gestures was
also computed. For hypotheses H1 and H2, we conducted Kruskal-
Wallis tests, followed by Bonferroni-corrected post-hoc Dunn’s
tests, to identify significant differences in participants’ speed pref-
erences and the number of robots used across semantic types.

3.4 Results
This section presents a statistical analysis of the agreement scores,
taxonomic distribution, and effect of semantic type. We also provide
key insights from participants’ feedback in the post-study survey
and prototype a co-speech gesture set for swarm robots.

3.4.1 Agreement Score.
Figure 3 shows the calculated agreement scores for the generated co-
speech gestures across all referent words. The average agreement
scores with their standard errors for each semantic type are as
follows: 𝐴Adjective = 0.26± 0.07, 𝐴Noun = 0.43± 0.09, 𝐴Preposition =

0.37 ± 0.07, and 𝐴Verb = 0.18 ± 0.03.

3.4.2 Taxonomic Distribution.
Figure 4 presents the percentage breakdown of the taxonomy for all
generated co-speech gestures. For a detailed taxonomic distribution
by semantic type, refer to Appendix I. Iconic gestures were the
most common (30%), closely followed by metaphoric gestures (29%).
The remaining categories included abstract (15%), deictic (13%), and
symbolic gestures (13%). Notably, deictic gestures were more preva-
lent for propositions (31%), likely due to the need for pointing to
represent relational concepts. The use of iconic gestures increases
to 42% for nouns, likely because these gestures often represent the
object the word refers to. Similarly, metaphoric gestures rise to 38%
for adjectives, as adjectives are more abstract and harder to convey
through simple objects or actions. Regarding the collective forma-
tion of robot groups, we found that the distribution is balanced
between a single robot (22%), a robot line (28%), basic shapes (19%),
and complex symbols (22%).

While we initially anticipated complex movements for co-speech
gestures, the analysis revealed that most movements were simple.
For robot groups, aside from being stationary, the most common
collective movement was transform (37%), where robot groups
moved between locations and sometimes changed their formation.
Some group movements also displayed back-and-forth (15%) and
shape-tracing (6%) behaviors. Individual robot movements were
also straightforward, with most external movements being either
straight (40%) or curved/circular (17%). Internal movements were
rare, with jittering (5%), oscillation (2%), and spinning (1%) being
the most common.

3.4.3 Effect of Semantic Type.
There was a significant difference in preferred speed among ges-
tures based on semantic types (𝑝∗∗∗ < 0.001), as shown in Figure 5.A.
Verbs (𝑀 = 2.04 ± 0.08) and prepositions (𝑀 = 1.99 ± 0.08) elicited
faster speeds compared to nouns (𝑀 = 1.57 ± 0.10, 𝑝∗∗ = 0.003 and
𝑝∗ = 0.011 respectively) and adjectives (𝑀 = 1.59± 0.10, 𝑝∗ = 0.015
and 𝑝∗ = 0.04 respectively). However, no significant differences
were found between verbs and prepositions (𝑝 = 0.75), or between
nouns and adjectives (𝑝 = 0.66). This supports hypothesis H1, sug-
gesting that speech instances with different content require varying
swarm gesture speeds.

Regarding the number of robots (Figure 5.B), while there is sig-
nificant variation across semantic types (𝑝∗∗∗ < 0.001), contra-
dicting H2, post-hoc tests showed that nouns (𝑀 = 8.78 ± 0.19)
prompted the use of more robots compared to all other groups
(𝑝∗
𝐴
= 0.012, 𝑝∗∗

𝑃
= 0.002, 𝑝∗∗

𝑉
= 0.006). However, excluding nouns,

no significant differences were observed across semantic types
(𝑝 = 0.88). This can be attributed to the observation that gestures
accompanying nouns are more likely to be iconic (41%), which tend
to require a higher number of robots.

No significant differences were found in participants’ judgments
of speech-gesture matching (𝑝 = 0.09) or the number of robot
groups used (𝑝 = 0.51) across different semantic types. On average,
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Figure 3: Agreement scores for the generated co-speech gestures are presented for each referent word, categorized by semantic
type. Within each semantic type, words are sorted from the lowest to the highest agreement score. The dotted line represents
the average agreement score for each semantic type.
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Figure 4: Taxonomic breakdown of the generated co-speech gestures across all conditions.

participants rated the speech-gesture match at 2.03±0.037, suggest-
ing a reasonable alignment between gestures and speech instances.
The average number of robots used was 8.00 ± 0.12, with an av-
erage of 2.40 ± 0.076 robot groups. The preferred speed averaged
1.80 ± 0.048, indicating a preference for medium to slow speeds.

3.4.4 Post-study Survey.
The most common strategy reported by participants for the brain-
storming task was using simple and familiar visual representations

of words, adopted by 10 participants. For example, P5 explained,
"My approaches to this were to try to make something visually fa-
miliar, such as for the word ’people,’ I put 3 robots into lines that
would make a human stick figure." Similarly, P1 suggested that for
the word "best," the optimal approach was "to just use a pictorial
representation (a literal 1)." The second most common approach,
mentioned by 6 participants, was drawing inspiration from human
gestures. P9 shared, "For the word ’towards,’ I imagined an arrow
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Figure 5: Figure A shows the average participant preference
for robot speed (where 0 indicates no movement, 1 is slow, 2
is medium, and 3 is fast) and average participant judgment
of how well the brainstormed gesture matches the refer-
ent word (where 0 indicates no match, 1 is a low match,
2 is a medium match, and 3 is a high match). Verbs and
prepositions elicited significantly faster speeds than nouns
(𝑝 < 0.01, ** and 𝑝 < 0.05, *, respectively) and adjectives (both
𝑝 < 0.05, *). Figure B presents the average number of individ-
ual robots and robot groups used in the gestures. The number
of individual robots used was significantly higher for nouns
than for other semantic types (𝑝𝐴 < 0.05, *, other 𝑝 < 0.01, **).

pointing to a single robot, then expanding to surround it, similar to
how we use our pointer finger to indicate an area."

11 participants highlighted difficulties in brainstorming gestures
for abstract words. For instance, P19 said that “some words like ’book,’
’think,’ and ’beautiful’ were hard to create because you normally don’t
use gestures to describe them.” Additionally, 7 participants noted chal-
lenges related to the limited number of robots, which constrained
their ability to create more complex gestures. P20 shared that for

the word "money," they envisioned a dollar sign, but the limited
number of robots made it difficult to form the desired shape. Never-
theless, 3 participants suggested that the limitation in the number
of robots fostered creativity in their brainstorming process, with
P13 noting that the constraint “is a good way to get myself thinking
creatively and fast.”

Regarding the robots’ appearance, 9 participants suggested adding
color to the robots, either through the robots themselves or via LED
lights, as the current robots are all white. P6 highlighted the impact
of color, arguing that "colors could make a big impact for emotions
and to stress importance — for medical, a Red Cross would be recog-
nizable and not confused with a white cross from church." In addition,
7 participants proposed using circular shapes instead of squares
for the robots, as they would allow for greater flexibility in gesture
creation. P2 remarked, "maybe circle would be a better way, more
flexible for representing gestures more accurately like pixels."

3.4.5 Co-speech Gesture Set.
The co-speech gesture set was developed by selecting referent
words with agreement scores around or above the average for each
semantic type and choosing the gestures most frequently generated
by participants. Moreover, based on participants’ preference for
simple and familiar visual representations indicated in the post-
study survey, we selected the gesture set accordingly. For example,
between two gesture options for the word "best" — the number 1
shape or a podium shape with a robot at the top — we chose the
former option due to its simplicity. Figure 1 shows two possible
gesture designs for the referent word "run," while Figure 6 presents
the rest of the gesture set.

4 EVALUATION STUDY
To assess the quality of the co-speech gesture set (Figure 6) gen-
erated in the elicitation study, we conducted an online evaluation
study within a voice assistant (VA) context. We compared VAs
equipped with swarm-based co-speech gestures to those using sim-
ple animated movements, similar to indicators on devices like Ama-
zon Alexa and Google Home Assistants [37], to evaluate whether
the swarm-based gestures enhance perceptions of the VA’s animacy,
likability, and intelligence, as well as improve its movement in terms
of fluidity, semantic alignment, and temporal synchronization.

4.1 Hypotheses
Previous studies comparing physical and virtual implementations
of robots [79] and personal assistants [65] have shown that physical
embodiment enhances human perception of these agents, while
incorporating co-speech gestures improves the perception of their
movements [36]. Drawing on these findings and the current context
of evaluating co-speech gestures in physical swarm robots, we
formulated the following hypotheses:

H1: VAs with swarm-based gestures will be perceived as more ani-
mated, likable, and intelligent than animated VAs.
Similar to prior works comparing physical and virtual agents [65,
79], the current study adapts the Godspeed questionnaire [6]. This
hypothesis excluded the anthropomorphism and perceived safety
metrics, as the primary goal of implementing co-speech gestures
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Figure 6: Co-speech gestures for referent words with high agreement scores. For some referent words, multiple co-speech
gesture designs are shown, separated by dotted lines. In each design, red squares indicate the robots that have moved from
their initial positions. Designs without red squares represent the final formation of the swarm robots after their movements
from any previous positions.
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Figure 7: Side-by-side videos of VAs delivering the phrase
"Go around the building." In Figure A, the swarm-based VA
performs a gesture represented by the curved arrow. In Fig-
ure B, the animated VA features a simple contracting and
expanding circle that reflects the audio’s volume.

in swarm robots is to enhance animacy, likability, and perceived
intelligence, rather than the other two aspects.

H2: The gestures of swarm-based VAs will be viewed as more fluid,
semantically aligned, and temporally synchronized than the move-
ments of animated VAs.
This hypothesis is based on Salem et al. [61], which found that im-
plementing gestures in physical robots improves human perception
of their movements, particularly by enhancing fluidity, semantic
alignment of gestures with speech, and synchronization between
gestures and audio.

4.2 Methods
We adopted awithin-subject methodology inspired by Kurenchenko
et al.’s large-scale evaluation of gesture generation models [36]. Par-
ticipants watched two side-by-side videos of VAs — one featuring
the swarm-based VA (Figure 7.A) and the other showing the an-
imated VA (Figure 7.B) — then completed a Likert-scale survey
comparing the two VAs across six metrics: animacy, likability, per-
ceived intelligence, fluidity, semanticity, and synchronization.

4.2.1 Participants.
We recruited 30 participants (13 male, 17 female) aged between 20
and 62 years (𝑀 = 34.0±2.06) through Prolific [52]. All participants
were fluent in English and received CAD$4 for their participation.
Each study session took an average of 22.37 ± 1.76 minutes to com-
plete. Participants were required to enable their audio and provide
informed consent before participating. The study was approved by
our institutional review board.

4.2.2 Stimuli.
The experimental stimuli consisted of 17 pairs of videos, each corre-
sponding to one of the 17 words in our proposed co-speech gesture
set (Figure 6). Each video pair features two VAs answering the same
question with identical responses but differing in their movements
(Figure 7). The question-response pairs were selected to ensure con-
cise answers with a direct word-gesture correlation. For example,
in response to "How do I get to the supermarket?" the answer "Go
around the building" would trigger a gesture aligned with the word
"around." Both the question and response audio were generated
using Google Cloud Text-to-Speech AI [20], and the VA movements
began only during the response audio. The gestures of the swarm-
based VA were implemented using the same Toio robot platform

Figure 8: The average comparative ratings indicate that
the swarm-based VA is perceived as more animated (𝑝 <

0.001, ***), likable (𝑝 < 0.01, **), and intelligent (𝑝 < 0.05, *)
than the animated VA. Additionally, its movements are
viewed as more fluid (𝑝 < 0.001, ***), semantically aligned
(𝑝 < 0.001, ***), and synchronized (𝑝 < 0.01, **).

[69] as in the elicitation study, while the animated VA’s movements
were programmed as a solid white circle that expands and con-
tracts in response to the volume magnitude of the audio, similar
to the volume indicators found in commercial voice assistants like
Amazon Alexa and Google Home [37].

4.2.3 Procedure.
After consenting to participate in the study, participants engaged
in 17 trials, each corresponding to a pair of video stimuli. In each
trial, participants viewed the video pair and completed a survey
comparing the two VAs on six characteristics: animacy, likability,
perceived intelligence, fluidity, semanticity, and synchronization.
The survey used a 7-point Likert scale, with questions phrased as,
"Please assess to what extent the following characteristic applies to
the voice assistant/movement of the voice assistant." The response
scale ranged from "Voice Assistant A is significantly better than
Voice Assistant B" to "Voice Assistant B is significantly better than
Voice Assistant A."

The order of VA presentation in the video pairs was balanced
with randomization: in 9 pairs, the swarm-based VA was presented
as Voice Assistant A and the animated VA as Voice Assistant B,
while in 8 pairs, the roles were reversed. The data was processed so
that a score of -3 indicates "Animated VA is significantly better than
swarm-based VA," 0 indicates "Both VAs are equal," and 3 indicates
"Swarm-based VA is significantly better than animated VA."

4.3 Analysis
We used Shapiro-Wilk tests to assess data normality for all six met-
rics, which revealed that none of the data were normally distributed
(all 𝑝∗∗∗ < 0.001). Consequently, we applied the Wilcoxon signed-
rank test to compare participants’ ratings on each metric against
the neutral midpoint score of 0.
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4.4 Results
As shown in Figure 8, we found that the swarm-based VA was
perceived to be more animated (𝑀 = 0.39 ± 0.12, 𝑝∗∗∗ < 0.001),
likable (𝑀 = 0.31 ± 0.10, 𝑝∗∗ = 0.0011), and intelligent (𝑀 = 0.17 ±
0.10, 𝑝∗ = 0.027) than the animated VA, supporting H1. In addition,
we found that the gestures of the swarm-based VA were viewed
as more fluid (𝑀 = 0.62 ± 0.15, 𝑝∗∗∗ < 0.001), semantically aligned
(𝑀 = 0.55 ± 0.14, 𝑝∗∗∗ < 0.001), and synchronized (𝑀 = 0.45 ±
0.14, 𝑝∗∗ = 0.0016) than the animated VA, supporting H2.

5 DISCUSSION
Drawing from the evaluation study’s results, we explore potential
applications of co-speech gestures in swarm robots and address the
current challenges in implementing these applications. Next, we
use the elicitation study’s findings to propose design insights for
the hardware and software requirements of future swarm-based
co-speech gesture systems.

5.1 Applications of Co-speech Gestures with
Swarm Robots

The evaluation study’s findings indicate that the co-speech gesture
set developed through the elicitation study enhances human-robot
interaction in a voice assistant (VA) context, making the VA appear
more animate, likable, and intelligent, with its movements per-
ceived as more fluid, semantically aligned, and synchronized. These
results support the use of swarm robots for co-speech gestures and
demonstrate a possible real-world application of the technology:
making multimodal and interactive voice assistants.

Swarm robots also have potential applications in interactive sto-
rytelling and narration for artistic and educational purposes. For
example, they could generate co-speech gestures in real-time dur-
ing storytelling, creating dynamic visual interactions that engage
audiences and enhance learning in classrooms or performances.
Building on prior research that explored the use of drones for artis-
tic applications [2] and tabletop swarm robots for narration [56] and
storytelling [53], a promising research direction is the development
of software for tabletop swarm robots to generate co-speech gesture
sequences for extended speech. This approach involves leveraging
natural language processing techniques to analyze semantic con-
tent and rhythm of speech, then create synchronized swarm-based
gestures. Advancing these research efforts could unlock innova-
tive applications in immersive storytelling, performative arts, and
multimodal interaction.

While the potential applications of co-speech gestures in swarm
robots are promising, current hardware and software limit their
implementation. For example, programming collective movements
on existing swarm robots, such as the Toio [69] used in our study,
remains cumbersome, and its hardware cannot perform certain
complex movements.

5.2 Hardware & Software Requirements of
Co-speech Gesture Systems

Here, we discuss how the results from the elicitation study can
guide the development of hardware and software components for

future swarm robotic systems capable of rendering co-speech ges-
tures. First, our study reveals that for each swarm-based co-speech
gesture, participants typically organize 2 to 3 groups of robots to
perform synchronized movements. These movements are relatively
simple, as a preference for simple visual representations of words
was expressed in the post-study survey. These robot group forma-
tions include single robots, lines, simple shapes, or symbols, with
collective movements often involving positional transforms, back-
and-forth motions, or shape-tracing. Nevertheless, current software
for tabletop swarm robots, such as the Toio platform used in this
study, primarily supports individual robot movements and lacks
capabilities for managing collective formations and synchronized
actions. Although research on larger swarm robot systems has ex-
plored these capabilities [4], such developments have not yet been
applied to smaller tabletop robots, which are better suited for con-
versational interfaces. Therefore, enhancing software for tabletop
swarm robots to support collective formations and synchronized
movements is crucial for advancing swarm-based conversational
agents. We recommend that future software algorithms for tabletop
swarm robots include the following features:

• The ability to arrange a group of robots into a cohesive
formation, particularly simple lines and shapes.

• The capability to move the entire robot group from one
location to another.

• The option to modify the formation of the robot group.
• The functionality to perform collective movements, such

as expanding, contracting, or shape-tracing.

Secondly, participants’ preferred speeds for swarm robot gestures
vary by semantic type. Therefore, when designing swarm robots
for co-speech gestures, it’s crucial to equip them with hardware
that supports a wide range of speeds. We recommend a maximum
speed of 450 mm/s, as Toio’s maximum speed of 350 mm/s [69] was
insufficient for capturing some complex motions.

We also observed that the number of robots used in each gesture
is generally consistent across different semantic types, except for
nouns, which require more robots to support iconic gestures. While
some participants also noted that a limited number of robots poses
significant challenges when creating more complex gestures, this
also encourages the generated gestures to be more creative, sim-
pler, and faster. Therefore, we recommend equipping swarm-based
gesture systems with at least 10 robots, and the system should be
able to move robots in and out of the gesture area to accommodate
the necessary number of robots for dynamic co-speech gestures.

Furthermore, the hardware of swarm robots needs improvement
to support small internal movements, such as jittering, oscillating,
or spinning in place. Although thesemovements are not required for
every gesture, they are helpful for certain cases, particularly when
indicating locations, as an alternative to pointing with dedicated
hands or fingers in humanoid robots. No tabletop swarm robot
systems, including the Toio robots used in our study, can perform
all of these subtle movements effectively. Enhancing hardware
to support such precise movements would greatly improve the
capability of swarm robots to generate more nuanced and effective
co-speech gestures.
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6 LIMITATIONS & FUTUREWORKS
In the elicitation study, to simplify the task for participants, we
limited the referent speech to single-word units rather than longer
phrases or sentences. However, longer phrases or sentences might
provide additional context that influences gesture generation. Fu-
ture studies could investigate how participants create co-speech
gestures for more complex speech contexts by incorporating longer
phrases or sentences.

Another limitation of the elicitation study was the use of white,
square-shaped swarm robots, which restricted the generalizability
of the findings. In the post-study survey, participants suggested that
alternative shapes, such as circles, could inspire more flexible and
diverse gesture designs. Participants also proposed incorporating
color, either through LED lights or painted surfaces, to enhance the
robots’ expressive capabilities. Future studies could address these
suggestions by experimenting with various robot shapes, sizes, and
colors, potentially enabling more complex and varied gestures and
leading to richer, more nuanced co-speech interactions.

Finally, the evaluation study is limited by its comparison of
swarm-based voice assistants (VAs) solely to a simple animated VA,
rather than to a humanoid VA with co-speech gestures. While this
choice reflects the current reality that most popular and commercial
VAs are represented by simple audio indicators rather than fully
embodied humanoid forms [8, 37], we acknowledge this limitation
and propose it as a direction for future research, focusing on the
effectiveness of swarm-based versus humanoid co-speech gestures
across various task contexts.

7 CONCLUSION
The current research presents a user-defined gesture set designed
for co-speech interactions with swarm robots and offers valuable
insights into the hardware and software advancements needed for
seamless real-time gesture generation. As swarm robots become
more dynamic and versatile, they have the potential to serve as
effective alternatives to humanoid robots in roles such as embod-
ied conversational agents and compact personal assistants. This
potential underscores the importance of enhancing swarm robot
capabilities to improve user interaction.
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Appendix I. Taxonometric breakdown of the generated co-speech gestures for different referent word categories.
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